高等教育国家级教学成果奖申请书附件

成果名称:激发学术志趣 培养领跑人才:"学堂计划"拔尖

创新人才培养模式探索与实践

推荐序号: 11025

附件目录:

- 1. 教学成果报告(不超过5000字,报告名称、格式自定)
- 2. 教学成果应用及效果证明材料(仅限1份)

材料目录

- 1.2012-2017 届"学堂计划"毕业生去向统计情况
- 2. 相同学科学堂班和非学堂班毕业生深造情况
- 3. 相同学科学堂班和非学堂班毕业生深造情况对比
- 4. 学堂班和非学堂班毕业生在世界顶尖院校深造情况
- 5. 2012-2017 届"学堂计划"毕业生读研深造情况
- 6. 2012-2017 届"学堂计划"毕业生个人获奖情况
- 7. 2012-2017 届"学堂计划"毕业生获得集体荣誉情况
- 8. "学堂计划"毕业生近年发表论文情况
- 9. 2012-2017 届"学堂计划"学生典型代表案例

1. 2012-2017 届"学堂计划"毕业生去向统计情况

表 1 2012-2017 届"学堂计划"毕业生去向统计表

毕业年份	毕业人数	读研人数	国外 [读研比例		国内
十亚十四	十亚八致	送到八数		读研人数	
2012	95	79	84%	49	30
2013	96	94	95%	49	42
2014	130	117	88%	65	50
2015	147	139	95%	88	51
2016	149	137	91%	77	59
2017	164	158	96%	107	50

(数据来源:清华大学学生部就业指导中心 2017年9月最新数据)

2. 相同学科学堂班和非学堂班毕业生深造情况

表 2 相同学科学堂班和非学堂班毕业生深造情况数据

比小年仏	하다 소교	毕业总	深造情况				大学排名前 E深造情况	
毕业年份	班级	人数	国内深造	国(境) 外深造	人数	深造 比例	人数	深造比例
2012	学堂班	95	28	51	79	83%	40	42%
2012	非学堂班	293	130	95	225	77%	53	18%
2012	学堂班	96	43	51	94	98%	37	39%
2013	非学堂班	376	160	97	257	68%	57	15%
	学堂班	130	49	68	117	90%	40	31%
2014	非学堂班	391	177	95	272	70%	52	13%
	学堂班	147	50	89	139	95%	56	38%
2015	非学堂班	362	175	83	258	71%	41	11%
2016	学堂班	149	57	80	137	93%	60	41%
2016	非学堂班	402	177	101	278	69%	52	13%
2017	学堂班	164	50	108	158	96%	73	45%
	非学堂班	302	162	81	243	80%	48	16%
A 21	学堂班	780	277	447	724	93%	306	39%
合计	非学堂班	2126	981	552	1533	72%	303	14%

(数据来源:清华大学学生部就业指导中心 2017年9月最新数据)

3. 相同学科学堂班和非学堂班毕业生深造情况对比

将相同学科学堂班和非学堂班毕业生的去向数据进行统计分析之后,结果显示,学堂班学生继续深造的比例要高于非学堂班学生,并且呈现出国外深造比例高于国内深造比例的特点(图1)。这说明"学堂计划"对于提高学生从事学术研究的志趣具有积极的促进作用。

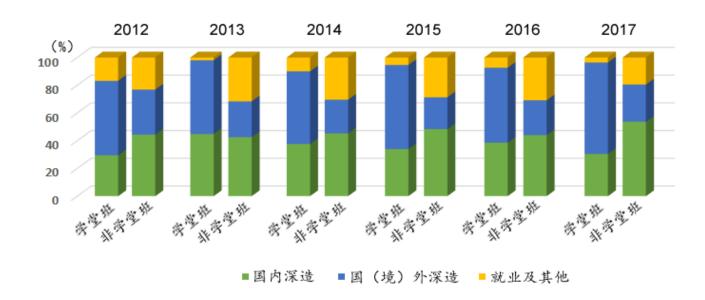


图 1 相同学科学堂班和非学堂班毕业生深造情况对比图

(数据来源:清华大学学生部就业指导中心 2017 年 9 月最新数据)

4. 学堂班和非学堂班毕业生在世界顶尖院校深造情况

进一步地,将学堂班和非学堂班毕业生出国深造的数据进行分析,结合 QS 世界大学排名情况,结果显示,学堂班毕业生在 QS 世界大学排名前 50 院校深造的比例远远高于非学堂班毕业生(图 2)。

图 2 学堂班和非学堂班毕业生在 QS 世界大学排名前 50 院校深造情况 (数据来源:清华大学学生部就业指导中心 2017 年 9 月最新数据)

5. 2012-2017 届"学堂计划"毕业生读研深造情况

表 3 2012-2017 届"学堂计划"毕业生读研深造情况表

	2012 届学堂毕业生深造情况				
序号	学堂班	姓名	深造院校		
1	数学班		美国加州大学伯克利分校		
2	数学班	柴玮	美国芝加哥大学		
3	数学班	钱天琛	美国约翰霍普金斯大学		
4	数学班	张云峰	美国加州大学洛杉矶分校		
5	数学班	赵桐	清华大学		
6	数学班	刘诗南	法国巴黎高等师范学校		
7	数学班	傅宇龙	清华大学		
8	数学班	高原骏	美国哥伦比亚大学		
9	数学班	吕琼石	美国耶鲁大学		
10	数学班	谢松晏	法国巴黎第十一大学		
11	数学班	潘锦钊	中国科学院数学与系统科学研究院		
12	数学班	周春辉	清华大学		
13	数学班	彭嘉钰	美国宾夕法尼亚大学		
14	数学班	方汉隆	美国罗格斯大学		
15	数学班	王梦露	美国麻省理工学院		
16	数学班	浦月	美国卡耐基梅隆大学		
17	数学班	任金波	清华大学		
18	数学班	朱艺航	美国哈佛大学		
19	数学班	王旭霏	美国哈佛大学		
20	数学班	朱慰	美国加州大学洛杉矶分校		
21	物理班	施舒哲	清华大学		
22	物理班	杨大猷	清华大学		
23	物理班	傅文博	美国哈佛大学		
24	物理班	廉骉	美国斯坦福大学		
25	物理班	叶琳达	日本东京大学		
26	物理班	高昂	美国马里兰大学		
27	物理班	顾颖飞	美国斯坦福大学		
28	物理班	曹文冬	清华大学		
29	物理班	兰天	加拿大圆周物理研究院		
30	物理班	张潇潇	美国哥伦比亚大学		
31	物理班	李俊儒	美国麻省理工学院		
32	物理班	谢塞恩	美国康奈尔大学		
33	物理班	纪文杰	美国麻省理工学院		
34	物理班	余承徽	美国加州大学伯克利分校		
35	物理班	杨望	美国加州大学圣地亚哥分校		
36	物理班	蒋易凡	清华大学		

37	物理班	赵立毅	清华大学
38	化学班	郑庆飞	中国科学院上海有机化学所
39	化学班	周航	加拿大多伦多大学
40	化学班	袁斌	清华大学
41	化学班	宋辰晨	美国斯坦福大学
42	化学班	李思超	美国宾夕法尼亚大学
43	化学班	陈骥	清华大学
44	化学班	吴耀庭	美国宾夕法尼亚大学
45	化学班	康岳桐	清华大学
46	化学班	马冬昕	清华大学
47	化学班	田天	清华大学
48	化学班	张霄	美国杜克大学
49	生命科学班	顾炜	澳大利亚墨尔本大学
50	生命科学班	曹琳琳	美国康奈尔大学
51	生命科学班	黎力	英国伦敦国王学院
52	生命科学班	陶斯博	美国加州大学圣地亚哥分校
53	生命科学班	王曦	美国康奈尔大学
54	生命科学班	张云霄	美国斯坦福大学
55	生命科学班	张浩文	清华大学
56	生命科学班	李叶华	清华大学
57	计算机科学实验班	张宁烨	清华大学
58	计算机科学实验班	魏征	加拿大多伦多大学
59	计算机科学实验班	陈诚	美国麻省理工学院
60	计算机科学实验班	王启辰	美国哥伦比亚大学
61	计算机科学实验班	黄棱潇	清华大学
62	计算机科学实验班	刘宇	清华大学
63	计算机科学实验班	马腾宇	美国普林斯顿大学
64	计算机科学实验班	施维捷	香港大学
65	计算机科学实验班	沈海晨	美国华盛顿大学
66	计算机科学实验班	华祯豪	美国卡耐基梅隆大学
67	计算机科学实验班	周冬	美国卡耐基梅隆大学
68	计算机科学实验班	钱晨	香港中文大学
69	计算机科学实验班	濮云飞	清华大学
70	计算机科学实验班	陈丹琦	美国斯坦福大学
71	计算机科学实验班	余林韵	清华大学
72	计算机科学实验班	俞华程	美国斯坦福大学
73	计算机科学实验班	杨弋	清华大学
74	计算机科学实验班	张振	清华大学
75	计算机科学实验班	艾凌青	清华大学
76	计算机科学实验班	曹锐创	清华大学
77	计算机科学实验班	汪野	清华大学
78	计算机科学实验班	刘雪晴	美国伊利诺伊大学香槟分校
79	计算机科学实验班	丁晓雯	美国卡耐基梅隆大学

	2013 届学堂毕业生深造情况				
序号	学堂班	姓名	深造院校		
1	数学班	冯媛媛	美国卡耐基梅隆大学		
2	数学班	余成龙	美国哈佛大学		
3	数学班	李奇芮	美国哥伦比亚大学		
4	数学班	乐鹏宇	瑞士苏黎世理工大学		
5	数学班	陈炜	法国巴黎第六大学		
6	数学班	程经睿	美国威斯康星大学		
7	数学班	孙宗汉	清华大学		
8	数学班	车子良	美国哈佛大学		
9	数学班	郭家胤	美国加州大学洛杉矶分校		
10	数学班	何翔	美国加州大学戴维斯分校		
11	数学班	陈励锴	美国芝加哥大学		
12	数学班	李问伊	清华大学		
13	数学班	刘琳媛	法国巴黎高等师范学校		
14	数学班	张铭	美国密歇根大学		
15	物理班	邹柳俊	美国哈佛大学		
16	物理班	高通	美国普林斯顿大学		
17	物理班	孙凯文	中国科学技术大学		
18	物理班	迟焕杭	美国斯坦福大学		
19	物理班	杨梦	清华大学		
20	物理班	戴彬	清华大学		
21	物理班	孙孝奇	清华大学		
22	物理班	满浩然	美国莱斯大学		
23	物理班	冯毅	美国加州大学圣克鲁兹分校		
24	物理班	高苹	美国哈佛大学		
25	物理班	崔力文	清华大学		
26	化学班	姚昱星	美国哈佛大学		
27	化学班	张艳	美国哥伦比亚大学		
28	化学班	廖方舟	清华大学		
29	化学班	竺翀宇	英国华威大学		
30	化学班	王志鹏	美国普林斯顿大学		
31	生命科学班	张梦璐	美国西南大学		
32	生命科学班	杜禹贤	美国德克萨斯大学		
33	生命科学班	陈晓雪	美国密歇根大学		
34	生命科学班	赵毓	美国约翰霍普金斯大学		
35	生命科学班	朱明原	美国康奈尔大学		
36	生命科学班	葛歆昕	美国耶鲁大学		
37	生命科学班	古梦婷	美国耶鲁大学		
38	生命科学班	王璇	美国伊利诺伊大学		
39	生命科学班	冯佳界	美国俄克拉荷马大学		
40	计算机科学实验班	刘艺成	清华大学		

41	计算机科学实验班	杨梦达	美国卡耐基梅隆大学
42	计算机科学实验班	谢晋宇	美国哥伦比亚大学
43	计算机科学实验班	董博	美国里海大学
44	计算机科学实验班	张昆玮	清华大学
45	计算机科学实验班	车正平	美国威斯康星大学
46	计算机科学实验班	漆子超	美国麻省理工学院
47	计算机科学实验班	蒲浩森	清华大学
48	计算机科学实验班	高逸涵	美国伊利诺伊大学
49	计算机科学实验班	艾可	美国伊利诺伊大学
50	计算机科学实验班	罗穗骞	清华大学
51	计算机科学实验班	贾志豪	美国斯坦福大学
52	计算机科学实验班	高阳	清华大学
53	计算机科学实验班	戴元熙	清华大学
54	计算机科学实验班	何昊青	清华大学
55	计算机科学实验班	毛杰明	美国普林斯顿大学
56	计算机科学实验班	刘智伟	清华大学
57	计算机科学实验班	曾驭龙	清华大学
58	计算机科学实验班	傅昊	清华大学
59	计算机科学实验班	赵天骥	清华大学
60	计算机科学实验班	蒋译瑶	清华大学
61	计算机科学实验班	曹竹	清华大学
62	计算机科学实验班	贾永政	清华大学
63	计算机科学实验班	李可骞	加拿大不列颠哥伦比亚大学
64	计算机科学实验班	左斌	清华大学
65	计算机科学实验班	左淞	清华大学
66	计算机科学实验班	常惠雯	美国普林斯顿大学
67	钱学森力学班	娄晶	清华大学
68	钱学森力学班	杨锦	美国加州理工学院
69	钱学森力学班	尹光	清华大学
70	钱学森力学班	周嘉炜	美国麻省理工学院
71	钱学森力学班	陈翔	清华大学
72	钱学森力学班	金鹏	清华大学
73	钱学森力学班	张程	清华大学
74	钱学森力学班	董延涛	清华大学
75	钱学森力学班	张驰宇	美国普渡大学
76	钱学森力学班	钱亚	清华大学
77	钱学森力学班	刘彧	美国布朗大学
78	钱学森力学班	刘洋	清华大学
79	钱学森力学班	杨阳	清华大学
80	钱学森力学班	瞿苍宇	清华大学
81	钱学森力学班	陈享	清华大学
82	钱学森力学班	罗海灵	清华大学
83	钱学森力学班	王哲夫	清华大学

84	钱学森力学班	夏晶	美国哈佛大学
85	钱学森力学班	张婉佳	美国普渡大学
86	钱学森力学班	张博戎	清华大学
87	钱学森力学班	倪彦硕	清华大学
88	钱学森力学班	刘佳鹏	清华大学
89	钱学森力学班	奚柏立	清华大学
90	钱学森力学班	陈镇鹏	清华大学
91	钱学森力学班	周文潇	美国罗切斯特大学
	201	_ 14 届学堂毕业生浇	
序号	学堂班	姓名	深造院校
1	数学班	张胜寒	美国加州大学伯克利分校
2	数学班	张羊晶	新加坡国立大学
3	数学班	郑澈	美国卡耐基梅隆大学
4	数学班	杨佼文	法国巴黎综合理工大学
5	数学班	虞文华	美国哥伦比亚大学
6	数学班	毛毅翔	美国哈佛大学
7	数学班	陈圆圆	美国密歇根大学安娜堡分校
8	数学班	唐修棣	美国加州大学圣地亚哥分校
9	数学班	李嘉伦	法国巴黎高等师范学校
10	数学班	郑志伟	清华大学
11	数学班	朱晖	法国巴黎高等师范学校
12	数学班	李梦龙	法国巴黎第六大学
13	数学班	张华进	清华大学
14	数学班	赖力	清华大学
15	数学班	李逸凡	清华大学
16	物理班	戴澄宇	美国密歇根大学安娜堡分校
17	物理班	戴哲昊	美国麻省理工学院
18	物理班	丁时杰	清华大学
19	物理班	冯瑞阳	美国华盛顿大学麦迪逊分校
20	物理班	胡琦	加拿大周边学者国际计划
21	物理班	李博海	清华大学高等研究院
22	物理班	孙骁航	美国普林斯顿大学
23	物理班	王卓骁	清华大学
24	物理班	王梓岳	清华大学
25	物理班	武晔玮	美国科罗拉多大学波尔得分校
26	物理班	徐林	美国麻省理工学院
27	物理班	徐智临	清华大学
28	物理班	许方舟	清华大学
29	物理班	严箴劼	美国麻省理工学院
30	物理班	章文欣	清华大学
31	物理班	周安	加拿大周边学者国际计划
32	物理班	周啸飞	美国加州大学伯克利分校
33	化学班	范瑞希	美国卡耐基梅隆大学

34	化学班	倪兵	清华大学
35	化学班	王淼	美国康奈尔大学
36	化学班	王若瑜	清华大学
37	化学班	曾令达	清华大学
38	化学班	计经纬	清华大学
39	化学班	季者	美国加州大学伯克利分校
40	化学班	顾宇炜	美国麻省理工学院
41	化学班	郭子健	英国剑桥大学
42	化学班	韩 硕	美国麻省理工学院
43	化学班	王昱佳	美国斯克利普斯研究所
44	化学班	林常帆	美国康奈尔大学
45	化学班	刘欣宇	清华大学
46	化学班	纪金朝	清华大学
47	生命科学班	陈哲沁	清华大学
48	生命科学班	杜明建	美国德州大学西南医学中心
49	生命科学班	丁霄哲	美国加州大学圣地亚哥分校
50	生命科学班	范 潇	清华大学
51	生命科学班	李津旸	美国宾夕法尼亚大学
52	生命科学班	李晓弈	美国纪念斯隆-凯特琳癌症中心
53	生命科学班	刘成浩	美国布兰迪斯大学
54	生命科学班	史斌斌	清华大学
55	生命科学班	史小婧	美国南加州大学
56	生命科学班	孙笑尘	美国麻省理工学院
57	生命科学班	王田	美国加州大学圣地亚哥分校
58	生命科学班	王宇宁	美国哥伦比亚大学
59	生命科学班	杨和	美国哈佛大学
60	生命科学班	杨天放	美国德州大学西奥斯町分校
61	生命科学班	张行健	美国德州大学西南医学中心
62	生命科学班	朱濛	英国剑桥大学
63	计算机科学实验班	魏达	清华大学
64	计算机科学实验班	董宇茜	清华大学
65	计算机科学实验班	王国赛	清华大学
66	计算机科学实验班	魏凌宇	美国南加州大学
67	计算机科学实验班	张浩源	香港大学
68	计算机科学实验班	李远志	美国普林斯顿大学
69	计算机科学实验班	朱倩如	美国卡内基美隆大学
70	计算机科学实验班	李新野	美国布朗大学
71	计算机科学实验班	吴佳俊	美国麻省理工学院
72	计算机科学实验班	潘宇超	清华大学
73	计算机科学实验班	李崇轩	清华大学
74	计算机科学实验班	杜超	清华大学
75	计算机科学实验班	王正宇	美国哈佛大学
76	计算机科学实验班	汪一宁	美国卡内基美隆大学

77	计算机科学实验班	吴翼	美国加州大学伯克利分校			
78	计算机科学实验班	王君行	美国卡内基美隆大学			
79	计算机科学实验班	陈炜艺	美国纽约市立大学柏鲁克学院			
80	计算机科学实验班	刘天任	美国麻省理工学院			
81	计算机科学实验班	高伟豪	美国伊利诺伊大学香槟分校			
		马瑞				
82	计算机科学实验班		清华大学			
83	计算机科学实验班	于雪璐	清华大学			
84	计算机科学实验班	李健玮	美国杜克大学			
85	计算机科学实验班	郝天一	清华大学			
86	计算机科学实验班	李孚	清华大学			
87	计算机科学实验班	杨鑫	美国华盛顿大学			
88	计算机科学实验班	李昕泽	清华大学			
89	计算机科学实验班	蒋宁	美国密歇根大学			
90	计算机科学实验班	杨成	清华大学			
91	计算机科学实验班	李成涛	美国麻省理工学院			
92	钱学森力学班	柴一占	清华大学			
93	钱学森力学班	王申	清华大学			
94	钱学森力学班	张迥	美国德州大学奥斯汀分校			
95	钱学森力学班	沈浩	清华大学			
96	钱学森力学班	杨富方	清华大学			
97	钱学森力学班	姚宏翔	清华大学			
98	钱学森力学班	姚泉舟	清华大学			
99	钱学森力学班	苏杭	中科院			
100	钱学森力学班	艾立强	清华大学			
101	钱学森力学班	危伟	清华大学			
102	钱学森力学班	王梓岩	清华大学			
103	钱学森力学班	赵振昊	清华大学			
104	钱学森力学班	王云杰	清华大学			
105	钱学森力学班	孟伟鹏	清华大学			
106	钱学森力学班	孙宇申	清华大学			
107	钱学森力学班	王宇生	美国加州大学欧文分校			
108	钱学森力学班	郭婧怡	美国康奈尔大学			
109	钱学森力学班	刘幸	美国布朗大学			
110	钱学森力学班	来旸	美国伊利诺伊大学香槟分校			
111	钱学森力学班	王天宝	清华大学			
112	钱学森力学班	左珩	美国麻省理工学院			
113	钱学森力学班	萧遥	清华大学			
114	钱学森力学班	厉侃	美国西北大学			
115	钱学森力学班	马曙光	清华大学			
	2015 届学堂毕业生深造情况					
序号	学堂班	姓名	深造院校			
1	数学班	徐长吉	美国芝加哥大学			
2	数学班	龚文妍	美国普林斯顿大学			
		1				

3	数学班	陈张弛	法国巴黎十一大学
4	数学班	邱聪灵	美国普林斯顿大学
5	数学班	孙奥	美国麻省理工学院
6	数学班	叶峪廷	美国加州大学伯克利分校
7	数学班	印佳	新加坡国立大学
8	数学班	蒋旃	美国密歇根大学安娜堡分校
9	数学班	杨佳明	清华大学
10	数学班	顾雨琦	美国密歇根大学安娜堡分校
11	数学班	杨卓然	美国普林斯顿大学
12	数学班	岳光祎	美国麻省理工大学
13	数学班	李剑	清华大学
14	数学班	涂羽成	美国加州大学圣地亚哥分校
15	数学班	张逸真	美国普渡大学
16	数学班	金沛阳	清华大学
17	数学班	蔡一常	法国巴黎高等师范学院
18	物理班	李文雄	清华大学
19	物理班	张鹏飞	清华大学
20	物理班	李海威	清华大学
21	物理班	王逸飞	美国斯坦福大学
22	物理班	吴宇恺	美国密歇根大学安娜堡分校
23	物理班	李星河	美国斯坦福大学
24	物理班	付子操	美国加州大学圣塔芭芭拉分校
25	物理班	石竹均	美国哈佛大学
26	物理班	沈靖翔	北京大学
27	物理班	马鹏宇	清华大学
28	物理班	金翔	清华大学
29	物理班	王雨晨	清华大学
30	物理班	胡晓晓	清华大学
31	物理班	潘侠克	美国哥伦比亚大学
32	物理班	陶奕	清华大学
33	物理班	李成疏	加拿大不列颠哥伦比亚大学
34	物理班	刘源	美国布朗大学
35	物理班	陈源	美国斯坦福大学
36	物理班	颜子昂	加拿大不列颠哥伦比亚大学
37	物理班	郭晓觅	清华大学
38	物理班	郑 诚	美国加州大学洛杉矶分校
39	物理班	唐明嘉	美国莱斯大学
40	物理班	张健豪	清华大学
41	化学班	曹天阳	清华大学
42	化学班	窦金鑫	清华大学
43	化学班	袁倩	清华大学
44	化学班	施皓笙	澳大利亚墨尔本大学
45	化学班	赵重光	清华大学

46	化学班	黄 晟	清华大学
47	化学班	于洪德	清华大学
48	化学班	池腾	美国普渡大学
49	化学班	张远逸	美国加州大学圣塔芭芭拉分校
50	化学班	周治宇	清华大学
51	化学班	黄武根	中国科学院大连化学物理研究所
52	化学班	初棋	美国卡耐基梅隆大学
53	化学班	梁妍钰	美国卡耐基梅隆大学
54	化学班	成静远	德国查瑞特医学院
55	化学班	马赫	美国芝加哥大学
56	化学班	王梓林	清华大学
57	化学班	杨占略	美国加州大学洛杉矶分校
58	化学班	国晨星	美国德克萨斯州大学奥斯汀分校
59	化学班	林研贤	美国加州大学圣塔芭芭拉分校
60	化学班	马卓然	美国斯坦福大学
61	化学班	许伟东	美国哈佛大学
62	化学班	潘慨脉	清华大学
63	生命科学班	刘松雷	美国哈佛大学
64	生命科学班	侯怡然	美国华盛顿大学
65	生命科学班	谢恒义	清华大学
66	生命科学班	侯凌峰	美国哈佛大学
67	生命科学班	陈楚	美国密歇根大学
68	生命科学班	张孟阳	美国耶鲁大学
69	生命科学班	杨林枫	美国斯坦福大学
70	生命科学班	刘真	清华大学
71	生命科学班	刘楠	清华大学
72	生命科学班	李天一	清华大学
73	生命科学班	吕婉晴	美国耶鲁大学
74	生命科学班	杨潜	美国德州大学西南医学中心
75	生命科学班	方言	清华大学
76	生命科学班	李张强	清华大学
77	生命科学班	董晟成	美国密歇根大学
78	生命科学班	谭翔天	美国哥伦比亚大学
79	计算机科学实验班	施天麟	美国加州大学伯克利分校
80	计算机科学实验班	汤达	美国哥伦比亚大学
81	计算机科学实验班	李越	美国佐治亚理工学院
82	计算机科学实验班	梁佳文	美国卡内基梅隆大学
83	计算机科学实验班	赵宇飞	美国加州大学圣迭戈分校
84	计算机科学实验班	邢鑫	美国芝加哥大学
85	计算机科学实验班	刘启鹏	美国普林斯顿大学
86	计算机科学实验班	邓原	美国杜克大学
87	计算机科学实验班	周奕超	美国加州大学伯克利分校
88	计算机科学实验班	范顺豪	美国加州大学洛杉矶分校

89	计算机科学实验班	巫立凡	美国加州大学圣迭戈分校
90	计算机科学实验班	胡覃禾平	美国威斯康辛大学
91	计算机科学实验班	李茳淼	北京大学
92	计算机科学实验班	谭子涵	美国普林斯顿大学
93	计算机科学实验班	赵鸣飞	美国麦吉尔大学
94	计算机科学实验班	吴月忻	美国卡内基梅隆大学
95	计算机科学实验班	张宇兴	美国卡内基梅隆大学
96	计算机科学实验班	殷和政	美国加州大学伯克利分校
97	计算机科学实验班	谢远航	清华大学
98	计算机科学实验班	徐一翀	美国卡内基梅隆大学
99	计算机科学实验班	邓士川	清华大学
100	计算机科学实验班	李彤阳	美国马里兰大学
101	计算机科学实验班	滕依峰	美国威斯康辛大学
102	计算机科学实验班	巢睿	美国南加州大学
103	计算机科学实验班	闫宇	美国斯坦福大学
104	计算机科学实验班	吴旋	清华大学
105	计算机科学实验班	周绪仁	香港科技大学
106	计算机科学实验班	肖慎柯	清华大学
107	计算机科学实验班	李沛伦	清华大学
108	计算机科学实验班	汪思为	清华大学
109	计算机科学实验班	邝仲弘	清华大学
110	计算机科学实验班	黄甲辰	美国密歇根大学
111	计算机科学实验班	杨圣	美国马里兰大学
112	计算机科学实验班	殷鸣天	美国威斯康辛大学
113	钱学森力学班	宋言	清华大学
114	钱学森力学班	李默耕	澳大利亚墨尔本大学
115	钱学森力学班	宝鑫	清华大学
116	钱学森力学班	张和涛	北京理工大学
117	钱学森力学班	房文强	美国布朗大学
118	钱学森力学班	王晓强	清华大学
119	钱学森力学班	方励尘	美国约翰霍普金斯大学
120	钱学森力学班	于强	清华大学
121	钱学森力学班	李天意	美国明尼苏达大学
122	钱学森力学班	钟麟彧	清华大学
123	钱学森力学班	孙思劼	美国哈佛大学
124	钱学森力学班	李天奇	清华大学
125	钱学森力学班	王轶群	英国谢菲尔德大学
126	钱学森力学班	李新浩	美国麻省理工学院
127	钱学森力学班	黄世成	美国达特茅斯学院
128	钱学森力学班	施炯明	清华大学
129	钱学森力学班	狄嘉威	清华大学
130	钱学森力学班	王子宁	美国加州大学伯克利分校
131	钱学森力学班	张泽	美国斯坦福大学

132	钱学森力学班	林艺城	美国宾夕法尼亚大学
133	钱学森力学班	刘爽	美国波士顿大学
134	钱学森力学班	董云飞	清华大学
135	钱学森力学班	黄圣濠	清华大学
136	钱学森力学班	李兆涵	美国明尼苏达大学
137	钱学森力学班	陈梓钧	清华大学
138	钱学森力学班	杜浩东	美国普渡大学
139	钱学森力学班	薛楠	美国普林斯顿大学
	20:	16 届学堂毕业生深	登造情况
序号	学堂班	姓名	深造院校
1	数学班	殷思瑶	清华大学
2	数学班	钱帅杰	新加坡国立大学
3	数学班	胡奕啸	清华大学
4	数学班	王健	美国加州大学伯克利分校
5	数学班	陈锐	美国威斯康辛大学麦迪逊分校
6	数学班	孙巍峰	美国哈佛大学
7	数学班	孟成	美国普渡大学
8	数学班	欧韦古田	瑞士苏黎世联邦理工学院
9	数学班	杨李扬	美国加州理工学院
10	数学班	唐沩婧	美国密歇根大学安娜堡分校
11	数学班	陈炳仪	清华大学
12	数学班	高安凝哲	美国加州大学伯克利分校
13	数学班	王中剑	香港大学
14	数学班	张嘉成	美国普林斯顿大学
15	数学班	陆昊	美国普林斯顿大学
16	数学班	桂政平	清华大学
17	数学班	宋甘霖	美国耶鲁大学
18	数学班	王力汉	美国杜克大学
19	数学班	杨宇轩	美国哈佛大学
20	数学班	林艺儿	美国哥伦比亚大学
21	物理班	鲍昌华	清华大学
22	物理班	陈思恒	美国哈佛大学
23	物理班	丛琳	清华大学
24	物理班	费凡	美国马里兰大学
25	物理班	符箴程	美国华盛顿大学
26	物理班	李昊元	美国斯坦福大学
27	物理班	李厚辰	德国马尔堡大学
28	物理班	梁岳明	清华大学
29	物理班	刘明祖	美国宾夕法尼亚大学
30	物理班	吕铭	美国普林斯顿大学
31	物理班	马雨玮	清华大学
32	物理班	孟繁超	清华大学
33	物理班	沈汇涛	美国麻省理工学院

34	物理班	涂凯勋	清华大学
35	物理班	王炜辰	美国约翰霍普金斯大学
36	物理班	王兆有	美国斯坦福大学
37	物理班	杨平凡	清华大学
38	物理班	于博洋	清华大学
39	物理班	张士欣	清华大学
40	化学班	李姝聪	哈佛大学
41	化学班	唐博涵	清华大学
42	化学班	吴旭东	清华大学
43	化学班	向问天	清华大学
44	化学班	郑矗	美国斯坦福大学
45	化学班	张翼翔	清华大学
46	化学班	赵 旭	清华大学
47	化学班	杨乔木	美国宾夕法尼亚大学
48	化学班	刘清达	清华大学
49	化学班	孙臣兴	清华大学
50	化学班	王云鹏	清华大学
51	化学班	杨皓周	清华大学
52	化学班	张晨	清华大学
53	化学班	庄玥	清华大学
54	化学班	梁清馨	清华大学
55	化学班	许文韬	美国加州大学伯克利分校
56	化学班	陈若凡	美国芝加哥大学
57	化学班	李博权	清华大学
58	化学班	庞浩然	美国杜克大学
59	化学班	孙梦真	美国哥伦比亚大学
60	化学班	肖力木	美国明尼苏达大学双城分校
61	化学班	谢熠	美国佐治亚大学
62	化学班	赵瀚森	清华大学
63	化学班	张博涵	美国哈佛大学
64	化学班	钦可	美国麻省理工学院
65	化学班	翁亦澄	北大一清华生命联合中心
66	化学班	张婉玲	清华大学
67	化学班	黄健	清华大学
68	化学班	郑清芸	清华大学
69	化学班	冯元宁	美国西北大学
70	生命科学班	李晓璇	美国普林斯顿大学
71	生命科学班	王意翔	美国耶鲁大学
72	生命科学班	汪嘉伟	美国耶鲁大学
73	生命科学班	曹议匀	美国耶鲁大学
74	生命科学班	冯运	英国牛津大学
75	生命科学班	黄拓之	美国西南医学中心
76	生命科学班	刘玥	美国芝加哥大学

77	生命科学班	陈子奇	美国哈佛大学
78	生命科学班	陈修齐	美国约翰霍布金斯大学
79	生命科学班	吴平	美国普林斯顿大学
80	生命科学班	于沛加	北京大学
81	计算机科学实验班	万钧	美国麻省理工学院
82	计算机科学实验班	雷志贤	美国哈佛大学
83	计算机科学实验班	夷安	美国加州大学圣地亚哥分校
84	计算机科学实验班	钟沛林	美国哥伦比亚大学
85	计算机科学实验班	张放	美国密歇根大学
86	计算机科学实验班	冯迭乔	清华大学
87	计算机科学实验班	卓亮	美国纽约大学
88	计算机科学实验班	沈添笑	美国麻省理工学院
89	计算机科学实验班	孔令航	美国麻省理工学院
90	计算机科学实验班	夏雨	美国麻省理工学院
91	计算机科学实验班	艾雨青	美国华盛顿大学
92	计算机科学实验班	李竺霖	美国麻省理工学院
93	计算机科学实验班	张起	清华大学
94	计算机科学实验班	吴哲伦	美国普林斯顿大学
95	计算机科学实验班	项卓伦	美国伊利诺伊大学香槟分校
96	计算机科学实验班	金迪	美国布朗大学
97	计算机科学实验班	鞠安	美国加州大学伯克利分校
98	计算机科学实验班	胡威	美国普林斯顿大学
99	计算机科学实验班	杨于范	美国卡内基梅隆大学
100	计算机科学实验班	罗恒	美国加州大学圣地亚哥分校
101	计算机科学实验班	张天翼	清华大学
102	计算机科学实验班	黄秋实	美国加州大学圣地亚哥分校
103	计算机科学实验班	王森	美国卡内基梅隆大学
104	计算机科学实验班	张阳坤	香港大学
105	计算机科学实验班	徐方舟	美国卡内基梅隆大学
106	计算机科学实验班	罗宇男	美国伊利诺伊大学香槟分校
107	计算机科学实验班	宋正阳	清华大学
108	计算机科学实验班	赵锦煦	香港大学
109	计算机科学实验班	项思陶	美国南加州大学
110	计算机科学实验班	柏舸	香港大学
111	钱学森力学班	舒炫博	清华大学
112	钱学森力学班	黄懿	清华大学
113	钱学森力学班	贝帅	清华大学
114	钱学森力学班	何长耕	清华大学
115	钱学森力学班	李润泽	清华大学
116	钱学森力学班	杨权三	美国西北大学
117	钱学森力学班	曾克成	清华大学
118	钱学森力学班	高叶	清华大学
119	钱学森力学班	马明	清华大学

120	钱学森力学班	辛昉	清华大学
121	钱学森力学班	祝凌霄	清华大学
122	钱学森力学班	刘斌琦	清华大学
123	钱学森力学班	杨柳	布朗大学
124	钱学森力学班	林景	清华大学
125	钱学森力学班	孙帆	清华大学
126	钱学森力学班	周宇思	清华大学
127	钱学森力学班	章雨思	清华大学
128	钱学森力学班	祝世杰	清华大学
129	钱学森力学班	刘佳俊	美国宾夕法尼亚大学
130	钱学森力学班	潘哲鑫	清华大学
131	钱学森力学班	王敖	美国西北大学
132	钱学森力学班	袁博	清华大学
133	钱学森力学班	赵晨佳	清华大学
134	钱学森力学班	杨连昕	清华大学
135	钱学森力学班	常艺铧	清华大学
136	钱学森力学班	李闯	清华大学
	201	7届学堂毕业生深	· 经造情况
序号	学堂班	姓名	深造院校
1	数学班	王怡	美国纽约州立大学石溪分校
2	数学班	王昊宇	清华大学
3	数学班	刘芷宁	法国巴黎高等师范学校
4	数学班	徐则驰	新加坡国立大学
5	数学班	张必豪	美国哥伦比亚大学
6	数学班	秦翊宸	法国巴黎高等师范学校
7	数学班	杨卓熠	美国纽约大学
8	数学班	陈然	美国宾夕法尼亚大学
9	数学班	邵城阳	美国麻省理工学院
10	数学班	王浩旭	清华大学
11	数学班	杨羽轩	美国罗格斯大学
12	数学班	胡逸平	美国华盛顿大学
13	数学班	朱晶泽	美国哥伦比亚大学
14	数学班	林天润	清华大学
15	数学班	熊昊仁	美国加州大学伯克利分校
16	数学班	李阳垟	美国普林斯顿大学
17	数学班	郭怡辰	新加坡国立大学
18	数学班	白少云	美国普林斯顿大学
19	数学班	高子珺	美国斯坦福大学
20	数学班	张翔宇	美国康奈尔大学
21	数学班	张杨凡	美国伊利诺伊大学香槟分校
22	物理班	鲍亦澄	美国哈佛大学
23	物理班	陈博文	清华大学
24	物理班	陈博轩	清华大学
	1	1	İ

25	物理班	丁思凡	清华大学
26	物理班	辜晨曦	清华大学
27	物理班	蒋嘉麒	美国斯坦福大学
28	物理班	蒋文韬	美国斯坦福大学
29	物理班	李嘉琛	美国加州大学伯克利分校
30	物理班	梁赋珩	清华大学
31	物理班	刘博远	美国德州大学奥斯汀分校
32	物理班	梅全鑫	清华大学
33	物理班	任話	加拿大滑铁卢大学
34	物理班	赛罕娜	清华大学
35	物理班	宋盛雨央	中国科学院高能所
36	物理班	王丹青	美国加州大学伯克利分校
37	物理班	王志凌	清华大学
38	物理班	肖煌煜	美国华盛顿大学
39	物理班	肖俊祥	清华大学
40	物理班	解放	美国普林斯顿大学
41	物理班	熊昊楠	美国马里兰大学
42	物理班	徐穆清	美国哈佛大学
43	物理班	颜公望	清华大学
44	物理班	俞延	美国加州大学圣芭芭拉分校
45	物理班	袁斯祺	美国波士顿大学
46	物理班	张传坤	美国科罗拉多大学
47	物理班	赵佳曦	美国加州大学伯克利分校
48	物理班	仲原	清华大学
49	化学班	李允祺	美国加州大学伯克利分校
50	化学班	阮志远	美国加州大学伯克利分校
51	化学班	魏牧丰	美国加州大学伯克利分校
52	化学班	王文聪	美国麻省理工学院
53	化学班	吴之晨	美国斯克里普斯研究所
54	化学班	张峻尔	美国加州理工学院
55	化学班	曾宪丰	美国普林斯顿大学
56	化学班	姚骋波	美国哥伦比亚大学
57	化学班	王聆溪	美国康奈尔大学
58	化学班	陈文锶	美国佐治亚理工学院
59	化学班	张倬瑞	美国加州大学圣迭戈分校
60	化学班	梁晔	美国杜克大学
61	化学班	郑驰晖	英国伦敦大学学院
62	化学班	李沛安	香港科技大学
63	化学班	赵翰阳	美国伊利诺伊大学
64	化学班	吴佩尧	美国加州大学圣迭戈分校
65	化学班	李阳	美国加州大学圣芭芭拉分校
66	化学班	薄阳	美国伊利诺伊大学香槟分校
67	化学班	李维唐	清华大学

68	化学班	王云鹏	清华大学
69	化学班	梁晓平	清华大学
70	化学班	王宝源	清华大学
71	化学班	魏盛杰	清华大学
72	化学班	陈泓武	清华大学
73	化学班	梁家琦	清华大学
74	化学班	尹子鹤	清华大学
75	化学班	刘子扬	清华大学
76	化学班	王天	清华-北大生命科学联合中心
77	化学班	崔佳文	中国科学院上海有机化学研究所
78	化学班	王雨田	清华大学
79	化学班	李乾宁	清华大学
80	生命科学班	武博厚	美国芝加哥大学
81	生命科学班	周晨	美国哈佛大学
82	生命科学班	黄义鸣	美国哥伦比亚大学
	生命科学班	毛天杨	美国职鲁大学
83	生命科学班	世人物 谭震宇	美国密歇根大学安娜堡分校
84			美国爱荷华州立大学
85	生命科学班	张泽睿	
86	生命科学班	王立元	美国霍华德休斯医学研究所
87	生命科学班	车希明	美国威斯康辛大学
88	生命科学班	崔潇月	美国卡耐基梅隆大学
89	生命科学班	李天晓	美国耶鲁大学
90	生命科学班	徐家璐	清华大学
91	生命科学班	叶明达	英国牛津大学
92	生命科学班	林祖迪	美国哈佛大学
93	生命科学班	邹心之	美国斯坦福大学
94	生命科学班	邢峰	美国耶鲁大学
95	生命科学班	胡玉钊	美国冷泉港实验室
96	生命科学班	曲日浩	美国耶鲁大学
97	生命科学班	李岩	美国加州大学洛杉矶分校
98	生命科学班	谢丰	新加坡国立大学
99	计算机科学实验班	纪越	美国卡内基梅隆大学
100	计算机科学实验班	马蓉	清华大学
101	计算机科学实验班	郑舒冉	美国哈佛大学
102	计算机科学实验班	陈立杰	美国麻省理工学院
103	计算机科学实验班	吴艺杰	香港大学
104	计算机科学实验班	向鹏达	美国南加州大学
105	计算机科学实验班	郑弘宇	美国卡内基梅隆大学
106	计算机科学实验班	王戈锐	美国伊利诺伊大学香槟分校
107	计算机科学实验班	王康宁	美国杜克大学
108	计算机科学实验班	汤沛雯	美国哥伦比亚大学
109	计算机科学实验班	贾志鹏	美国德克萨斯大学奥斯汀分校
110	计算机科学实验班	胡渊鸣	美国麻省理工学院

111	计算机科学实验班	彭天翼	美国麻省理工学院
112	计算机科学实验班	毕克	香港中文大学
113	计算机科学实验班	孙天成	美国加州大学圣地亚哥分校
114	计算机科学实验班	王若松	美国卡内基美隆大学
115	计算机科学实验班	罗雨屏	美国普林斯顿大学
116	计算机科学实验班	张逸玮	美国加州大学伯克利分校
117	计算机科学实验班	陈晓奇	美国普林斯顿大学
118	计算机科学实验班	刘汉鹏	美国南加州大学
119	计算机科学实验班	谷昱	加拿大滑铁卢大学
120	计算机科学实验班	宋一凡	美国卡内基梅隆大学
121	计算机科学实验班	董方宏	美国普林斯顿大学
122	计算机科学实验班	李志远	美国普林斯顿大学
123	计算机科学实验班	黄逸洲	美国马里兰大学
124	计算机科学实验班	占玮	美国普林斯顿大学
125	计算机科学实验班	李辰星	清华大学
126	计算机科学实验班	刘壮	美国加州大学伯克利分校
127	计算机科学实验班	张涵瑞	美国杜克大学
128	计算机科学实验班	李君诚	清华大学
129	钱学森力学班	赵雪轩	清华大学
130	钱学森力学班	何泽远	英国剑桥大学
131	钱学森力学班	王罗浩	清华大学
132	钱学森力学班	袁李	清华大学
133	钱学森力学班	王宇嘉	清华大学
134	钱学森力学班	包佳立	清华大学
135	钱学森力学班	刘凡犁	清华大学
136	钱学森力学班	任建勋	清华大学
137	钱学森力学班	阚镭	清华大学
138	钱学森力学班	巩浩然	清华大学
139	钱学森力学班	杨赛超	清华大学
140	钱学森力学班	杨策	清华大学
141	钱学森力学班	武迪	清华大学
142	钱学森力学班	张梓彤	清华大学
143	钱学森力学班	邵枝淳	美国加州大学伯克利分校
144	钱学森力学班	杨伟东	清华大学
145	钱学森力学班	朱秉泉	清华大学
146	钱学森力学班	俞嘉晨	清华大学
147	钱学森力学班	孙传鹏	美国宾夕法尼亚大学
148	钱学森力学班	王博涵	美国伊利诺伊大学香槟分校
149	钱学森力学班	陈百鸣	清华大学
150	钱学森力学班	李逸良	美国麻省理工学院
151	钱学森力学班	张恩瑞	美国布朗大学
152	钱学森力学班	胡脊梁	美国麻省理工学院
153	钱学森力学班	高炜	美国麻省理工学院

154	钱学森力学班	李步选	美国麻省理工学院
155	钱学森力学班	王子路	美国卡内基梅隆大学
156	钱学森力学班	龙佳新	清华大学
157	钱学森力学班	李家其	美国德克萨斯大学奥斯汀分校

(数据来源:清华大学教务处计划科"学堂计划"毕业生毕业当年统计数据)

6. 2012-2017 届"学堂计划"毕业生个人获奖情况

表 4 2012-2017 届"学堂计划"毕业生个人获奖情况表

姓名	班级	获奖名称 (获奖年份)	毕业 年份
邱聪灵	数学班	清华大学本科特等奖学金(2014) 丘成桐大学生数学竞赛陈省身奖金奖(2014) 丘成桐大学生数学竞赛周炜良奖银奖(2014) 丘成桐大学生数学竞赛个人全能奖金奖(2014)	2015
李阳垟	数学班	清华大学本科特等奖学金(2016) 丘成桐大学生数学竞赛华罗庚奖铜奖(2016) 丘成桐大学生数学竞赛林家翘奖金奖(2016) 丘成桐大学生数学竞赛个人全能奖金奖(2016)	2017
谢松晏	数学班	丘成桐大学生数学竞赛华罗庚奖铜奖(2011)	2012
高原骏	数学班	丘成桐大学生数学竞赛华罗庚奖铜奖(2011) 丘成桐大学生数学竞赛许宝鵦—林家翘奖铜奖(2011)	2012
苏桃	数学班	丘成桐大学生数学竞赛陈省身奖铜奖(2011) 丘成桐大学生数学竞赛周炜良奖铜奖(2011) 丘成桐大学生数学竞赛个人全能奖铜奖(2011)	2012
朱艺航	数学班	丘成桐大学生数学竞赛陈省身奖铜奖(2011) 丘成桐大学生数学竞赛周炜良奖银奖(2011) 丘成桐大学生数学竞赛个人全能奖铜奖(2011)	2012
方汉隆	数学班	丘成桐大学生数学竞赛周炜良奖铜奖(2011)	2012
王旭霏	数学班	丘成桐大学生数学竞赛许宝騄—林家翘奖金奖(2011) 丘成桐大学生数学竞赛个人全能奖铜奖(2011)	2012
余成龙	数学班	丘成桐大学生数学竞赛陈省身奖银奖(2011) 丘成桐大学生数学竞赛陈省身奖银奖(2012) 丘成桐大学生数学竞赛周炜良奖铜奖(2012) 丘成桐大学生数学竞赛个人全能奖金奖(2012)	2013
乐鹏宇	数学班	丘成桐大学生数学竞赛华罗庚奖银奖(2012)	2013
孙宗汉	数学班	丘成桐大学生数学竞赛华罗庚奖银奖(2012)	2013
车子良	数学班	丘成桐大学生数学竞赛华罗庚奖银奖(2012) 丘成桐大学生数学竞赛许宝鵦—林家翘奖银奖(2012)	2013
郑志伟	数学班	丘成桐大学生数学竞赛许宝騄—林家翘奖铜奖(2012) 丘成桐大学生数学竞赛华罗庚奖铜奖(2013) 丘成桐大学生数学竞赛陈省身奖铜奖(2014)	2014
虞文华	数学班	丘成桐大学生数学竞赛华罗庚奖铜奖(2013)	2014
张胜寒	数学班	丘成桐大学生数学竞赛陈省身奖铜奖(2013)	2014
李嘉伦	数学班	丘成桐大学生数学竞赛周炜良奖银奖(2013) 丘成桐大学生数学竞赛个人全能奖铜奖(2013)	2014
毛毅翔	数学班	丘成桐大学生数学竞赛林家翘奖银奖(2013) 丘成桐大学生数学竞赛个人全能奖铜奖(2013)	2014
孙奥	数学班	丘成桐大学生数学竞赛陈省身奖银奖(2014) 丘成桐大学生数学竞赛林家翘奖铜奖(2014) 丘成桐大学生数学竞赛个人全能奖银奖(2014)	2015
邱聪灵	数学班	丘成桐大学生数学竞赛陈省身奖金奖(2014)	2015

		丘成桐大学生数学竞赛周炜良奖银奖(2014)	
		丘成桐大学生数字兒麥周府良美報美(2014) 丘成桐大学生数学竞赛个人全能奖金奖(2014)	
蔡一常	数学班	丘成桐大学生数学免费4万生配关显决(2014)	2015
徐长吉	数学班	丘成桐大学生数学竞赛许宝鵦—林家翘奖铜奖(2014)	2015
17 4-	14 W	丘成桐大学生数学竞赛陈省身奖金奖(2015)	0010
杨宇轩	数学班	丘成桐大学生数学竞赛陈省身奖金奖(2015)	2016
T 併	*L \\\ \TIT	丘成桐大学生数学竞赛个人全能奖铜奖(2015)	0016
王健	数学班	丘成桐大学生数学竞赛华罗庚奖银奖(2015)	2016
		丘成桐大学生数学竞赛周炜良奖银奖(2014)	
高安凝哲	数学班	丘成桐大学生数学竞赛陈省身奖铜奖(2015) 丘成桐大学生数学竞赛周炜良奖银奖(2015)	2016
		丘成桐大学生数学免费// 人全能奖铜奖(2015)	
		丘成桐大学生数学竞赛周炜良奖银奖(2014)	
		丘成桐大学生数学竞赛周炜良奖银奖(2015)	
孟成	数学班	丘成桐大学生数学竞赛个人全能奖银奖(2015)	2016
		丘成桐大学生数学竞赛华罗庚奖铜奖(2015)	
		丘成桐大学生数学竞赛周炜良奖铜奖(2014)	
		丘成桐大学生数学竞赛林家翘奖金奖(2015)	
フ) 出 1夕	W W TH	丘成桐大学生数学竞赛个人全能奖银奖(2015)	0010
孙巍峰	数学班	丘成桐大学生数学竞赛周炜良奖铜奖(2015)	2016
		丘成桐大学生数学竞赛华罗庚奖铜奖(2015)	
		丘成桐大学生数学竞赛林家翘奖金奖(2015)	
王怡	数学班	丘成桐大学生数学竞赛陈省身奖金奖(2015)	2017
邵城阳	数学班	丘成桐大学生数学竞赛华罗庚奖铜奖(2016)	2017
		丘成桐大学生数学竞赛陈省身奖铜奖(2016)	
朱晶泽	数学班	丘成桐大学生数学竞赛华罗庚奖铜奖(2016)	2017
		丘成桐大学生数学竞赛华罗庚奖铜奖(2016)	
王昊宇	数学班	丘成桐大学生数学竞赛林家翘奖铜奖(2016)	2017
		丘成桐大学生数学竞赛许宝騄—林家翘奖金奖(2016)	
./h =	111 - 111 I-	丘成桐大学生数学竞赛个人全能奖银奖(2016)	2015
白少云	数学班	丘成桐大学生数学竞赛陈省身奖铜奖(2016)	2017
熊昊仁	数学班	丘成桐大学生数学竞赛陈省身奖铜奖(2016)	2017
王浩旭	数学班	丘成桐大学生数学竞赛周炜良奖铜奖(2016)	2017
沈汇涛	物理班	清华大学本科特等奖学金(2015)	2016
胡琦	物理班	全国大学生物理竞赛一等奖	2014
张传坤	物理班	第三届全国大学生物理实验竞赛一等奖	2017
蒋嘉麒	物理班	第三届全国大学生物理实验竞赛二等奖	2017
게매扣	44 TH TIT	北京市优秀毕业生	0016
刘明祖 鲍亦澄	物理班	第三届全国大学生物理实验竞赛二等奖	2016
製 が 没 博 文 博	物理班 物理班	第三届全国大学生物理实验竞赛二等奖 北京市优秀毕业生	2017 2012
一		北京市优秀毕业生	2012
高苹		北京市优秀毕业生	2012
高通	物理班	北京市优秀毕业生	2013
徐穆清		北京市优秀毕业生	2013
吴宇骁	物理班	微软亚洲研究院微软小学者奖	2013
邹柳俊		微软亚洲研究院微软小学者奖	2013
胡琦		微软亚洲研究院微软小学者奖	2014
戴澄宇	物理班	微软亚洲研究院微软小学者奖	2014

陈源	物理班	微软亚洲研究院微软小学者奖	2015
余欣彤	物理班	微软亚洲研究院微软-IEEE 小学者奖	2016
马雨玮	物理班	微软亚洲研究院微软-IEEE 小学者奖	2016
李天一	生命科学班	全国周培源大学生力学竞赛一等奖(2013)	2015
王立元	生命科学班	清华大学"挑战杯"课外学术科技作品竞赛特等奖 (2017)	2017
邹心之	生命科学班	第十四届"挑战杯"全国大学生课外学术科技作品竞赛 二等奖(2016)	2017
贾志豪	计算机科学实验班	清华大学本科特等奖学金(2012)	2013
吴佳俊	计算机科学实验班	清华大学本科特等奖学金(2013)	2014
陈立杰	计算机科学实验班	清华大学本科特等奖学金(2016) ACM 全球决赛铜牌(2014) ACM 亚洲赛中国赛区金牌(2015) Google Distributed Code Jam rank 6(2015) 中国大学生程序设计竞赛总决赛冠军(2016)	2017
周奕超	计算机科学实验班	"挑战杯"全国大学生课外学术科技作品竞赛二等奖 (2015)	2015
邝仲弘	计算机科学实验班	MCM/ICM 全球特等奖 (2014)	2015
邓士川	计算机科学实验班	第五届"蓝桥杯"全国软件专业人才大赛一等奖 (2014)	2015
王钦石	计算机科学实验班	ACM 全球总决赛第 11 名(2014)	2016
罗宇男	计算机科学实验班	MCM/ICM 二等奖(2014)	2016
董方宏	计算机科学实验班	CMC 北京赛区数学专业组一等奖(2014)	2017
张涵瑞	计算机科学实验班	ACM/ICPC 中国区决赛金牌(2015)	2017
毕克	计算机科学实验班	DEF CON 23 第五名 (2015)	2017
李逸良	钱学森力学班	清华大学本科特等奖学金(2016) 全国周培源大学生力学竞赛特等奖(2015)	2017
王子宁	钱学森力学班	全国周培源大学生力学竞赛一等奖(2013)	2015
董云飞	钱学森力学班	全国周培源大学生力学竞赛一等奖(2013)	2015
于 强	钱学森力学班	全国周培源大学生力学竞赛一等奖(2013)	2015
李天意	钱学森力学班	全国周培源大学生力学竞赛一等奖(2013)	2015
何泽远	钱学森力学班	全国周培源大学生力学竞赛一等奖(2015)	2015
杨伟东	钱学森力学班	全国周培源大学生力学竞赛一等奖(2015)	2015
赵靖宇	钱学森力学班	全国周培源大学生力学竞赛特等奖(2017)	2017
刘浩	钱学森力学班	全国周培源大学生力学竞赛一等奖(2017)	2017
胡佳音	钱学森力学班	全国周培源大学生力学竞赛一等奖(2017)	2017
边正梁	钱学森力学班	全国周培源大学生力学竞赛一等奖(2017)	2017
刘圣铎	钱学森力学班	全国周培源大学生力学竞赛二等奖(2017)	2017
孙嘉玮	钱学森力学班	全国周培源大学生力学竞赛二等奖(2017)	2017
石循磊	钱学森力学班	2016 robocup 中国公开赛类人组三等奖	2016
王骞	钱学森力学班	2016 robocup 中国公开赛类人组三等奖	2016

7. 2012-2017届"学堂计划"毕业生获得集体荣誉情况

表 5 2012-2017 届"学堂计划"毕业生集体荣誉情况表

获奖年份	获奖名称	获奖集体
2011	丘成桐大学生数学竞赛团体赛银奖和铜奖各1项	数学班
2012	丘成桐大学生数学竞赛团体赛银奖和铜奖各1项	数学班
2014	丘成桐大学生数学竞赛团体赛银奖1项,铜奖2项	数学班
2015	丘成桐大学生数学竞赛团体赛银奖2项	数学班
2016	丘成桐大学生数学竞赛团体赛金奖1项,银奖2项	数学班
2015	丘成桐大学生数学竞赛团体赛银奖	数学班
2016	丘成桐大学生数学竞赛团体赛金奖	数学班
2012	国际遗传工程机器大赛金牌	生命科学班
2013	国际遗传工程机器大赛金牌	生命科学班
2014	国际遗传工程机器大赛银奖	生命科学班
2015	国际遗传工程机器大赛金牌	生命科学班
2013	清华大学第31届"挑战杯"比赛特等奖	生命科学班
2015	ACM 国际程序设计大赛亚洲赛北京赛区金牌, ACM 国际程序设计大赛亚洲赛北京赛区金牌, ACM 国际程序设计大赛亚洲赛北京赛区金牌, ACM 国际程序设计	计算机科学实验班
2015	际程序设计大赛亚洲赛上海赛区金牌	11 to 14 14 14 14 14 15
2015	全国大学生数学建模北京市一等奖	计算机科学实验班
2015	首届中国大学生程序设计竞赛金奖	计算机科学实验班
2013	ICPC 亚洲区长春赛区金牌	计算机科学实验班
2014	ACM 亚洲赛长沙赛区金牌, ACM 亚洲赛长春赛区金牌, ACM 亚洲赛区牡丹江站亚军, ACM 亚洲区域赛成都赛区冠军	计算机科学实验班
2015	ACM 国际程序设计大赛亚洲赛北京赛区金牌, ACM 国际程序设计大赛亚洲赛上海赛区金牌, ACM ICPC 中国长春赛区第一, ACM 国际大学生程序设计竞赛亚洲区合肥赛区金奖	计算机科学实验班
2015	全国大学生数学建模北京市一等奖	计算机科学实验班
2015	首届中国大学生程序设计竞赛金奖	计算机科学实验班
2016	ACM-ICPC 亚洲区预赛青岛赛区冠军,中国大学生程 序设计竞赛杭州赛区冠军	计算机科学实验班
2017	清华大学先进班集体	计算机科学实验班
2013	清华大学第31届"挑战杯"比赛一等奖	钱学森力学班

8. "学堂计划"毕业生近年发表论文情况

表 6 "学堂计划"毕业生近年论文清单表

姓名	发表论文	发表会议/期刊
俞嘉晨	An AC Sensing Scheme for Minimal Baseline Drift and Fast Recovery on Graphene FET Gas Sensor.	International Conference on Solid-State Sensors, Actuators and Microsystems, 2017
	Low-Frequency Electronic Noise in Polyethylenimine-functionalized Chemical Vapor Deposited Graphene FET Gas Sensor.	International Conference on Solid-State Sensors, Actuators and Microsystems, 2017
	A Phase Sensitive Measurement Technique for Boosted Response Speed of Graphene FET Gas Sensor.	ECTC (IEEE Electronic Components and Technology Conference), 2017
陈百鸣	Evaluation of Automated Vehicles Encountering Pedestrians at Unsignalized Crossings.	2017 IEEE Intelligent Vehicles Symposium
赵雪轩	An Infrastructure to Support Self-Adaptation for Resource Constrained Robotic Systems.	CASE 2017
	Curvature induced hierarchical wrinkling patterns in soft bilayers.	Soft Matter, 2016
邵枝淳	FE Analysis of Rock with Hydraulic-Mechanical Coupling Based on Continuum Damage Evolution.	Mathematical Problems in Engineering, 2016
	Spreading and Breakup of Nanodroplet Impinging on Surface.	Physics of Fluids, 2017
	An Experimental Study on the Cavitation of Water with Effects of SiO 2 Nanoparticles.	Experimental Thermal and Fluid Science, 2016
	Measuring Graphene Adhesion on Silicon Substrate by Single and Dual Nanoparticle Loaded Blister.	Adv. Mater. Interfaces
李步选	Laser Processed 2D Transition Metal Carbides (MXenes) for Flexible Pseudo Supercapacitors.	第十九届国际固态传 感器、执行器会议 (Transducer 2017)
	Foldable Paper Electronics: Direct Write Full Circuit with Functional Units on MG-Paper.	第十九届国际固态传 感器、执行器会议 (Transducer 2017)
	Synthesis Of Single Layer MoS2 Array For Surface Raman Enhancement Spectroscopy (SERS).	第十九届国际固态传 感器、执行器会议 (Transducer 2017)

	High Capacity TiS2 Coated CNT Forest Electrodes For Micro Energy Storage Devices.	第十九届国际固态传感器、执行器会议 (Transducer 2017)
包佳立	Implementation of three DoFs small satellite ground simulation system.	AIAA, 2016
巩浩然	Folding to Curved Surfaces: A Generalized Design Method and Mechanics of Origami-based Cylindrical Structures.	scientific report, 2016
	Cells Sensing Mechanical Cues: Stiffness Influences the Lifetime of Cell - Extracellular Matrix Interactions by Affecting the Loading Rate.	ACS nano, 2016
	Integrin endocytosis on elastic substrates mediates mechanosensing.	Journal of Biomechanics, 2015
胡脊梁	Substrate stiffness of endothelial cells directs LFA-1/ICAM-1 interaction: A physical trigger of immune-related diseases?	Clinical hemorheology and microcirculation, 2016
	Size and speed dependent mechanical behavior in living mammalian cytoplasm.	PNAS, 2017
	Rapid Assembly of Large Scale Transparent Circuit Arrays Using PDMS Nanofilm Shaped Coffee Ring.	Advanced functional materials, 2017
何泽远	Passive Nonlinear Springs for Assisting the Deployment of Mesh Reflectors.	The European Conference on Spacecraft Structures, Materials and Environmental Testing (14th. 2016. Toulouse. France).
	恢复系数的不同定义及其适用性分析.	力学与实践 2015
李逸良	车辆转弯时内轮差的运动学理论模型.	力学与实践 2017
	The deformation mechanism analysis of a circular tube under free inversion.	Thin-Walled Structures 2016
薛楠	Strongly Metastable Assemblies of Particles at Liquid Interfaces.	LANGMUIR 30 (49): 14712-14716. 2014 (2014年12月5日的 ACS (美国化学学会) Editors' Choice)
房文强	Electro-hydrodynamic shooting phenomenon of liquid metal stream.	APPLIED PHYSICS LETTERS. 105(13):134104 .20 14
赵晨佳	Observations and temporal model of a honeybee's hairy tongue in microfluid transport.	JOURNAL OF APPLIED PHYSICS 118(19): 194701 2015

李新浩	Estimation of viscous dissipation in nanodroplet impact and spreading.	PHYSICS OF FLUIDS 27 (5): 052007 2015
谭震宇	DNA nanostructures constructed with multi-stranded motifs.	Nucleic Acids Research, 2017, 45(6), 3606.
曲日浩黄义鸣	RNAex: an RNA secondary structure prediction server enhanced by high-throughput structure-probing data.	Nucleic Acids Research, 2016
叶明达	Cryoem structure of yeast cytoplasmic exosome complex.	Cell Research, 2016, 26(7), 822.
邹心之	Engineering the ribosomal dna in a megabase synthetic chromosome.	Science, 2017
车希明	The molecular mechanism of ethylene-mediated root hair development induced by phosphate starvation.	Plos Genetics,2016
李天晓 黄义鸣	RNA Biomarkers: Frontier of Precision Medicine for Cancer.	Non-Coding RNA, 2017
李宗昱	Substrate stiffness governs the initiation of B cell activation by the concerted signaling of PKC β and focal adhesion kinase.	eLife, 2017
李晓璇	An Arabidopsis ABC Transporter Mediates Phosphate Deficiency-Induced Remodeling of Root Architecture by Modulating iron homeostasis in roots.	Molecular Plant, 2016
杜禹贤	Plasma Membrane Profiling Reveals Upregulation of ABCA1 by Infected Macrophages Leading to Restriction of Mycobacterial growth.	Frontiers in Microbiology, 2016
刘玥	NOK/STYK1 promotes the genesis and remodeling of blood and lymphatic vessels during tumor progression.	Biochemical and Biophysical Communications, 2016
陶斯博	The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation.	Plant Physiology, 2016
史小婧	Smad7 Protein Interacts with Receptor-regulated Smads (R-Smads) to Inhibit Transforming Growth Factor- β (TGF- β)/Smad Signaling.	Journal of Biochemical Chemistry
刘楠	Structural basis for receptor recognition and pore formation of a zebrafish aerolysin-like protein.	EMBO Report, 2016
李张强	Structure of the voltage-gated calcium channel Cavl.1 complex.	Science, 2015
	Structure of the rabbit ryanodine receptor RyR1 at near-atomic resolution.	Nature, 2015
李天一	YeastFab: the design and construction of standard biological parts for metabolic engineering in Saccharomyces cerevisiae.	Nucleic Acids Research, 2015
胡玉钊	Histone hl defect in escort cells triggers germline tumor in drosophila ovary.	Developmental Biology, 2017

	Germinal-center development of memory b cells	Nature Immunology,
毛天杨	driven by i1-9 from follicular helper t cells.	2017
U)(1/4)	Plexin b2 and semaphorin 4c guide t cell recruitment and function in the germinal center.	Cell Reports, 2017
武博厚	Divergent lncrnas regulate gene expression and lineage differentiation in pluripotent cells.	Cell Stem Cell, 2016
王立元	Disrupted-in-schizophrenia-1 (disc1) protein disturbs neural function in multiple disease-risk pathways. Human Molecular Genetics.	Human Molecular Genetics, 2017
	Low PMEPR OFDM Radar Waveform Design Using the Iterative Least Squares Algorithm.	IEEE Signal Processing Letters, 2015
赵桐	Analysis of random pulse repetition interval radar.	2016 IEEE Radar Conference (RadarConf)
	Cramer-Rao Lower Bounds for the Joint Delay-Doppler Estimation of an Extended Target.	IEEE Transactions on Signal Processing, 2016
傅宇龙	Proof of a conjecture on the genus two free energy associated to the an singularity.	Journal of Geometry & Physics, Volume 76, p. 10-24. Feb/2014
	Linear dynamical neural population models through nonlinear embeddings.	NIPS 2016
高原骏	Simultaneous denoising, deconvolution, and demixing of calcium imaging data. High-dimensional neural spike train analysis with generalized count linear dynamical systems.	Neuron, 2016, 89(2), 285-299. NIPS 2015
	Integrative analysis of GWAS summary data and functional annotations highlights signal enrichment in immune-related DNA elements for late-onset Alzheimer's disease.	Alzheimer's & Dementia: The Journal of the Alzheimer's Association, 2016,12(7), P176-177.
吕琼石	Integrative analysis of GWAS summary data and functional annotations identifies additional loci for late-onset Alzheimer's disease. Alzheimer's & Dementia.	The Journal of the Alzheimer's Association, 2016, 12(7), P854.
口	Systematic tissue-specific functional annotation of the human genome highlights immune-related DNA elements for late-onset Alzheimer's disease.	(manuscript available on bioRxiv) Winner of 2016 ACGA Trainee Award - Predoctoral Basic Sciences
	A statistical framework to predict functionalnon-coding regions in the hu man genome through integrated analysis of annotation data.	Scientific Reports, 2015, 5, 10576
	GenoWAP: GWAS signal prioritization through integrated analysis of genomic functional	Bioinformatics, 201 6, 32(4): 542-548.

	annotation.	
	Lu Q. *, Powles R. *, Wang Q., He B., Zhao H. (2016). Integrative tissue-specific functional annotations in the human genome provide novel insights on many complex traits and improve signal prioritization in genome wide association studies.	PLOS Genetics, 1 2(4): e1005947. (Pre-doctoral Finalist of 2015 ASHG/Charles Epstein Trainee Award for Excellence in Human Genetics Research) Journal of Geometry
周春辉	Proof of a Conjecture on the Genus Two Free Energy Associated to the A_n Singularity.	& Physics, 2014, 76(2):10-24
叶琳达	Magnetodielectric effect in Z-type hexaferrite.	Appl. Phys. Lett.,2012,100, 032901
高昂	Accelerating Cycle Expansions by Dynamical Conjugacy.	The Journal of Statistical Physics, 2012, 146 56-66
傅文博	Separation induced resonances in quasi-one-dimensional ultracold atomic gases.	Physical Review A,2012, 85, 012703
廉骉	Three-dimensional hydrodynamic instabilities in stellar core collapses.	MNRAS, 2012, 420, 2147
施舒哲	Relativistic correction to charmonium dissociation temperature.	Phys. Lett. B,2012, 718(1) 143 - 146
吴宇骁	Short-range asymptotic behavior of the wave functions of interacting spin-1/2 fermionic atoms with spin-orbit coupling: A model study.	Phys. Rev. A,2013, 87, 032703
孙孝奇	Superfluidity of Bosons in Kagome Lattices with Frustration.	Phys. Rev. Lett., 201 2,109 265302
迟焕杭	Decoy-state method of quantum key distribution with both source errors and statistics fluctuations.	Phys. Rev. A, 2012, 86, 042307
杨梦	Letters in Monthly Notices of the Royal Astronomical Society.	MNRAS Letter,2012,421, L62-L6
刘源	Assessment of delocalized and localized molecular orbitals through electron momentum spectroscopy.	Chin. Phys., 2014, B23, No.6,063403

	Vibrational State-Selective Resonant Two-Photon Photoelectron Spectroscopy of AuS- via a Spin-Forbidden Excited State.	J. Phys. Chem. Lett.,2015, 6 637-642
金翔	Vapor-Condensation-Assisted Optical Microscopy for Ultralong Carbon Nanotubes and Other Nanostructures.	Nano letters, 2014, 14 3527-3533.
	Landau Damping in a Mixture of Bose and Fermi Superfluids.	Phys. Rev. A, 2015, 92 (3), 033620
沈汇涛	Magnetic-order-driven topological transition in the Haldane-Hubbard model.	Phys. Rev. B 91,2015, 16, 161107 (R)
	Spin selected based on periodic-msgnetic-semiconductor/nomagnetic barrier superlattices.	AIP Advances, 2015, 5, 077115
杨平凡	Spin-dependent tunneling time in periodic-msgnetic-semiconductor/nomagnetic barrier superlattices.	Appl. Phys. Lett. ,2016, 108, 052402
陈思恒	Growing local likelihood network: Emergence of communities.	Europhysics etters,201 5, 112(2), 28003
王兆有	Time-reversal symmetry protected chiral interface states between quantum spin and quantum anomalous Hall insulators.	Phys. Rev.B, 2015, 92 (7) 075138
蒋嘉麒	The acceleration of electrons with light in nanostructures" (invited paper).	SPIE Photonics West,2017, P. 10113-9
赵佳曦	Study of RNA Polymerase II Clustering Inside Live-Cell Nuclei Using Bayesian Nanoscopy.	ACS Nano, 2016, 10 (2), 2447-2454
赛罕娜	The Silicon and Calcium High-velocity Features in Type Ia Supernovae from Early to Maximum Phases.	Astrophysical Journal, Supplement Series, 2015,220, 20
У. Т МР	The Oxygen Features in Type Ia Supernovae and Implications for the Nature of Thermonuclear Explosion.	The Astrophysical Journal, Journal, 20 16, 826, 2
蒋文韬 熊昊楠	Coulomb oscillations in a gate-controlled few-layer graphene quantum dot.	Nano Letters, 2016, 16(10), 6245-6251
梅全鑫	Reliable and robust entanglement witness.	Phys. Rev. A ,2016,93, 4042317
李嘉琛	Search for hard lags with intra-night optical observations of BL Lacertae.	AstronomischeNachr ichten, 2016, 337(3) ,286-292

鲍亦澄	Raman spectrometer control system based on	Physics
	microcontroller.	Experimentation, 20
		16, 36,11
TI 4	Software fault isolation with API integrity and	G0GD 0011
周冬	multi-principal modules.	SOSP, 2011
	Characterizing Inverse Time Dependency in	
陈丹琦		ICDM, 2011
	Multi-class Learning.	
	Beyond Ten Blue Links: Enabling User Click Modeling	WSDM, 2012
	in Federated Web Search.	
马腾宇	A New Variation of Hat Guessing Games.	COCOON, 2011
俞华程	On a Conjecture of Butler and Graham.	CoRR, 2011
西 十 克	Undefined Behavior: Who Moved My Code?	APSYS,2012
贾志豪	Improving Integer Security for Systems.	OSDI, 2012
	Optimal design and quantum benchmarks for coherent	Phys. Rev. Lett.,
谢晋宇	states amplifiers.	2012
		2012
	Unsupervised Object Class Discovery via Bottom-up	CVPR, 2012
	Multiple Class Learning.	
	A Classification Approach to Coreference in	JAMIA,2012
	Discharge Summaries: 2011 I2b2 Challenge.	0111111, 2012
	Harvesting Mid-level Visual Concepts from	CVPR, 2013
旦仕份	Large-scale Internet Images.	CVFR, 2013
吴佳俊	MILCut: A Sweeping Line Multiple Instance Learning	OVDD 0014
	Paradigm for Interactive Image Segmentation.	CVPR, 2014
	Harvesting Motion Patterns in Still Images from the	
	Internet.	CogSci,2014
	Reverse Image Segmentation: A High-level Solution	
		BMVC, 2014
브 웹	to a Low-level Task.	
吴翼		NIPS,2012
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model.	NIPS,2012 Proceedings of the
吴翼 李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple	NIPS,2012 Proceedings of the National Academy of
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items.	NIPS,2012 Proceedings of the
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted	NIPS, 2012 Proceedings of the National Academy of Sciences, 2013
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items.	NIPS,2012 Proceedings of the National Academy of
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures.	NIPS, 2012 Proceedings of the National Academy of Sciences, 2013
	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition	NIPS, 2012 Proceedings of the National Academy of Sciences, 2013 COLT, 2013 ASRU, 2013
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries.	NIPS, 2012 Proceedings of the National Academy of Sciences, 2013 COLT, 2013 ASRU, 2013
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process	NIPS, 2012 Proceedings of the National Academy of Sciences, 2013 COLT, 2013 ASRU, 2013
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial
李新野 汪一宁	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial Optimization,2012
李新野 汪一宁	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin Shares.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial
李新野 汪一宁	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial Optimization,2012 ACM EC,2014
李新野 汪一宁	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin Shares.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial Optimization,2012
李新野汪一宁王君行	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin Shares. Mutual Exclusion Algorithms in the Shared Queue	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial Optimization,2012 ACM EC,2014 ICDCN,2014
李新野 汪一宁	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin Shares. Mutual Exclusion Algorithms in the Shared Queue Model.	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial Optimization,2012 ACM EC,2014
李新野	to a Low-level Task. Dual Space Analysis of the Sparse Linear Model. On revenue maximization for selling multiple independently distributed items. A Theoretical Analysis of Normalized Discounted Cumulative Gain (NDCG) Ranking Measures. Query Understanding Enhanced by Hierarchical Parsing Structures. Joint Segmentation and Named Entity Recognition using Dual Decomposition in Chinese Discharge Summaries. Small Variance Asymptotics for Dirichlet Process Mixtures of SVMs. Junxing Wang. A simple Byzantine Generals protocol. Fair Enough: Guaranteeing Approximate Maximin Shares. Mutual Exclusion Algorithms in the Shared Queue Model. A Scalable Approach to Column-Based Low-Rank	NIPS,2012 Proceedings of the National Academy of Sciences,2013 COLT,2013 ASRU,2013 JAMIA,2014 AAAI,2014 Journal of Combinatorial Optimization,2012 ACM EC,2014 ICDCN,2014

	Model.	
	An end-to-end system to identify temporal relation	
刘天任	in discharge summaries: 2012 i2b2 challenge.	JAMIA,2013
	Structured Output Learning with Candidate Labels	
李成涛	for Local Parts.	ECML/PKDD,2013
	Sentiment Topic Model with Decomposed Prior.	SDM, 2013
	Bayesian Max-margin Multi-Task Learning with Data	0DM, 2010
	Augmentation.	ICML, 2014
	nugmentation.	Computer
魏凌宇	A faster triangle-to-triangle intersection test	Animation and
<i>y</i> ₀ × 1	algorithm.	Virtual Worlds, 2013
	Online Bayesian Passive-Aggressive Learning.	ICML, 2014
	Tianlin Shi, Jun Zhu, Online Bayesian	
	Passive-Aggressive Learning.	ICML, 2014
	A Reverse Hierarchy Model for Predicting Eye	
11. T 山	Fixations.	CVPR, 2014
施天麟	Correlated Compressive Sensing for Networked Data.	UAI,2014
		Operations Research
	A Fully Polynomial-Time Approximation Scheme for	Letters 42.3 (2014):
	Approximating a Sum of Random Variables.	197-202.
	Learning Where to Sample in Structured Prediction.	AISTATS, 2015
	Consideration of Market Share Objective.	DMAA 2014
李彤阳	Tongyang Li, Giulio Chiribella. Optimal State	QIP,2015
	Exclusion for Symmetric Sets of States.	Q1F,2010
冯齐纬	Deep Learning of Feature Representation with Multiple	ICASSP, 2014
4) 1 > 14	Instance Learning for Medical Image Analysis.	
		Journal of
	Bounded information dissemination in multi-channel	Combinatorial
闫宇	wireless networks.	Optimization,
	Speedup of information exchange using multiple	Springer, 2014
	channels in wireless ad hoc networks.	INFOCOM, 2015
	An efficient parallel algorithm for accelerating	
	computational protein design.	ISMB, 2014
	Massively Parallel A* Search on a GPU.	AAAI,2015
m -> 1m		Methods in
周奕超	Parallel Computational Protein Design.	Molecular
		Biology, 2015
	Computational Protein Design Using AND/OR	DECOMP 2015
	Branch-and-Bound Search.	RECOMB, 2015
	The Application of Two-Level Attention Models in	
徐一翀	Deep Convolutional Neural Network for Fine-Grained	CVPR, 2015
	Image Classification.	
黄甲辰	Upper bound on function computation in directed	Information Theory
/\ \ /\C	acyclic networks.	Workshop, 2015
KH 2 -1	Clustering Student Programming	ACM
殷和政	Assignments to Multiply Instructor	Learning@Scale,201
<	Leverage.	5
巢睿	Super-activation of quantum reference frames	QIP, 2015
万钧	Practical Considerations of Human-Machine	ACSAC, 2015
N M	Authentication.	,

	Information Cognodes on Arhitmary Town-1	TCALD 2016
	Information Cascades on Arbitrary Topologies	ICALP, 2016
夏雨	Morphological Segmentation with Window LSTM Neural	AAAI,2016
	Networks.	
罗宇男	Low-density Locality-sensitive Hashing Boosts	RECOMB, 2016
	Metagenomic Binning.	
吴哲伦	Face Recognition Using Local Gradient Binary	J. Electron.
	Count Pattern.	Imaging 24(6),
	D: 4.11.4 11 D 1 A	063003 (2015)
	Distributed Low Rank Approximation of Implicit Functions of a Matrix.	ICDE, 2016
钟沛林		
	Optimal Principal Component Analysis in Distributed and Streaming Models.	STOC, 2016
	Android Power Management and Analyses of Power	
柏舸		IOTC, 2013
扣比	Consumption in an Android Smartphone.	
胡威	New Characterizations in Turnstile Streams with	CCC, 2016
艾雨青	Applications.	NAACI OO1C
沈添笑	Making Dependency Labeling Simple, Fast and Accurate.	NAACL, 2016
	Extensive Facial Landmark Localization with	ICCV, 2013
	Coarse-to-fine Convolutional Network Cascade.	
	Learning Compact Face Representation: Packing a Face	MM,2014
	into an int32.	AAAT 0015
步沙理	Face Hallucination in the Wild.	AAAI,2015
范浩强	Approaching Human Level Facial Landmark Localization	IMAVIS,2016
	by Deep Learning.	
	Brief Announcement: A Tight Distributed Algorithm for	ACM SPAA, 2016
	All Pairs Shortest Paths and Applications. Nearly Optimal Distributed Algorithm for Computing	
	Betweenness Centrality.	ICDCS, 2016
	Pure Exploration of Multi-armed Bandit Under Matroid	
	Constraints.	COLT, 2016
	Adaptivity vs Postselection, and Hardness	
	Amplification for Polynomial Approximation.	ISAAC, 2016
	Bounded rationality of restricted Turing machines.	AAAI,2017
	K-Memory Strategies in Repeated Games.	AAMAS, 2017
陈立杰	Nearly Instance Optimal Sample Complexity Bounds for	
	Top-k Arm Selection.	AISTATS, 2017
	Complexity-Theoretic Foundations of Quantum	CCC 9017
	Supremacy Experiments.	CCC, 2017
	Towards Instance Optimal Bounds for Best Arm	COLT 2017
	Identification.	COLT, 2017
	On the Power of Statistical Zero Knowledge.	FOCS, 2017
	Bounded Rationality of Restricted Turing Machines.	AAAI,2017
王若松	Exponential separations in the energy complexity of	STOC, 2017
	leader election.	5100,2011
王若松	k-Regret Minimizing Set: Efficient Algorithms and	ICDT, 2017
王康宁	Hardness.	
	Tight detection efficiency bounds of Bell tests in	Phys. Rev.
彭天翼	no-signaling theories.	A,2016,94, 042126
少八共	Simulating large quantum circuits on a small quantum	QIP, 2017
	computer.	- ,
李志远	Solving Marginal MAP Problems with NP Oracles and	NIPS, 2016
十心地	Parity Constraints.	,

	Learning in games: robustness offast convergence.	NIPS, 2016
	Stability of Generalized Two-sided Markets with	AAMAS,2017
	Transaction Thresholds.	,
	Unsupervised Hyperspectral Image Segmentation:	GIGD 0012
	Merging Spectral an852963	SICE, 2016
	d Spatial Information in Boundary Adjustment.	
	AB3C: Adaptive boundary based band-categorization of	Journal of Applied
陈晓奇	hyperspectral images.	Remote Sensing, 2016,
147. AP 14		10(4),046009
	Poster Abstract: Adaptive and Personalized Energy	BuildSys,2016
	Saving Suggestions for Occupants in Smart Buildings.	Darracy 5, 2010
	Poster Abstract: Personal Energy Footprint in Shared	IPSN, 2016
	Building Environment.	11 011, 2010
	Deep Networks with Stochastic Depth.	ECCV,2016
刘壮	Densely Connected Convolutional Networks.	CVPR, 2017
	Snapshot Ensembles: Train 1, Get M for Free.	ICLR, 2017
	FC^4: Fully Convolutional Color Constancy with	CVDP 2017
胡渊鸣	Confidence-weighted pooling.	CVPR, 2017
	An Asynchronous Material Point Method.	SIGGRAPH, 2017
去 A All	Realizing a topological transition in a non-Hermitian	Dhyra De 0010 4 04
黄逸洲	quantum walk with circuit QED.	Phys. Rev. ,2016,A94
	Deep Convolutional Actiovation Features For Large	
	Scale Brain Tumor Histopathology Image	ICASSP, 2015
贾志鹏	Classification And Segmentation.	
21.4/77	Efficient Near-optimal Algorithms for Barter	
	Exchange.	AAMAS,2017
	<u> </u>	International
		International Journal of Game
	Unit-sphere games.	Journal of Game
张涵瑞	Unit-sphere games.	Journal of Game Theory,2017
张涵瑞	Unit-sphere games. Complete Submodularity Characterization in the	Journal of Game
张涵瑞	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model.	Journal of Game Theory,2017 FAW,2017
张涵瑞	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter	Journal of Game Theory,2017
	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange.	Journal of Game Theory,2017 FAW,2017
张涵瑞	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation.	Journal of Game Theory,2017 FAW,2017
郑舒冉	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for	Journal of Game Theory,2017 FAW,2017
	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017
郑舒冉	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017
郑舒冉	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017
郑舒冉	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017
郑舒冉	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017
郑舒冉 孙天成 罗雨屏 刘汉鹏	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017
郑舒冉 孙天成 罗雨屏	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017
郑舒冉 孙天成 罗雨 屏 刘汉 鹏 谷昱	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017
郑舒冉 孙天成 罗雨屏 刘汉鹏	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017
郑舒冉 孙天成 罗雨 屏 刘汉 鹏 谷昱	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids Research,2017
郑舒冉 孙天成 罗雨 屏 刘汉鹏 谷昱	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Almost All Even Yao-Yao Graphs Are Spanners.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids
郑舒冉 孙天成 罗	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Almost All Even Yao-Yao Graphs Are Spanners. Exponential separations in the energy complexity of	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids Research,2017 ESA,2016
郑舒冉 孙天成 罗雨 屏 刘汉鹏 谷昱	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Almost All Even Yao-Yao Graphs Are Spanners. Exponential separations in the energy complexity of leader election.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids Research,2017
郑舒冉 孙天成 罗	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Almost All Even Yao-Yao Graphs Are Spanners. Exponential separations in the energy complexity of leader election. k-Regret Minimizing Set: Efficient Algorithms and	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids Research,2017 ESA,2016 STOC,2017
郑舒冉 孙天成 罗	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Almost All Even Yao-Yao Graphs Are Spanners. Exponential separations in the energy complexity of leader election. k-Regret Minimizing Set: Efficient Algorithms and Hardness.	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids Research,2017 ESA,2016
郑舒冉 孙天成 罗	Unit-sphere games. Complete Submodularity Characterization in the Comparative Independent Cascade Model. Efficient Near-optimal Algorithms for Barter Exchange. Complexity and Algorithms of K-implementation. Convolution Neural Networks with Two Pathways for Image Style Recognition. Attribute preserving gamut mapping of measured BRDFs. Learning Online Alignments with Continuous Rewards Policy Gradient. Deep Reinforcement Learning for Dynamic Multichannel Access. Single-Pass PCA of Large High-Dimensional Data. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data. Almost All Even Yao-Yao Graphs Are Spanners. Exponential separations in the energy complexity of leader election. k-Regret Minimizing Set: Efficient Algorithms and	Journal of Game Theory,2017 FAW,2017 AAMAS,2017 AAMAS,2016 IEEE TIP,2017 EGSR,2017 ICASSP,2017 ICNC,2017 IJCAI,2017 Nucleic Acids Research,2017 ESA,2016 STOC,2017

吴旭东	Copper-Catalyzed Domino Synthesis of Benzo[4,5]imidazo[1,2-a]pyrimidin-4(10H)-ones Using Cyanamide as a Building Block	Advanced Synthesis & Catalysis, 2015
王天	Quasi-Racemic X-ray Structures of K27-Linked Ubiquitin Chains Prepared by Total Chemical Synthesis.	JACS, 2016
	Monomer/Oligomer Quasi-Racemic Protein Crystallography.	JACS, 2016
梁家 辨	Pyrimidine triazole thioether derivatives as Toll-Like receptor 5 (TLR5)/Flagellin complex inhibitors.	ChemMedChem, 2016
曾宪丰 吴佩尧 梁家骑 姚骋波	Small molecule and peptide recognition of protein transmembrane domains.	Biochemistry, 2017
吴之晨	Corona[5]arenes Accessed by a Macrocycle-to-Macrocycle Transformation Route and a One-Pot Three-Component Reaction	Angewandte Chemie International Edition, 2017

9. 2012-2017 届"学堂计划"学生典型代表案例

2012 届数学班朱艺航同学在抵达哈佛大学的第一周内通过了数学系博士资格考试的全部六门科目。

2012 届数学班高原骏,毕业后在格伦大学统计系攻读统计学博士学位,两篇机器学习会议 NIPS 论文(同时获得 2015 年和 2016 年的 NIPS travel award),一篇《Neuron》杂志三作论文。

2012 届数学班吕琼石,毕业后在美国耶鲁大学攻读生物统计系博士学位, 已发表第一作者论文 6 篇;获得 Predoctoral Finalist of 2015 ASHG/Charles J. Epstein Trainee Award for Excellence in Human Genetics Research; Winner of 2016 ACGA Trainee Award - Predoctoral Basic Sciences 两个奖项。目前 在美国威斯康星大学麦迪逊分校任助理教授。

2012 届物理班廉驫,在清华读本科时即已发表 SCI 文章 2 篇,并参加 2012 年美国物理学会的 March Metting; 2012 年毕业后到 Stanford University 物理系攻读博士学位,至今已发表 20 篇高水平学术论文,其中包括 Nature nanotech. 3 篇, Nature commun. 2 篇, Phys. Rev. Lett. 5 篇,引用数已到 692 (数据来自 Google 学术搜索)。

2012 届物理班李俊儒,在清华读本科时参加 2010 年第一届全国大学生物理实验竞赛获得一等奖(第一名),2012 年毕业后到 MIT 物理系攻读博士学位,2017年在国际上首次实验实现了超固体这种新物态(发表在 Nature 543, 91-94 2017),受到物理学界的极大重视。

2016 届物理班沈汇涛,在清华读本科时即已发表 SCI 文章 2 篇 (Phys. Rev. B 1 篇, Phys. Rev. A 1 篇),荣获 2015 年度清华大学本科生特等奖学金,并在 2016 年美国物理学会的 March Metting 上作报告,是很有潜力的学术新秀,目前在 MIT 物理系攻读博士学位。

2012 届化学班马冬昕,在清华大学化学系邱勇院士课题组获得博士学位,博士毕业后留校做博士后研究。国际首创可蒸镀离子型材料的通用分子设计策略,申请中国专利 2 项,发表 SCI 收录论文 16 篇,其中以第一作者身份在 Adv. Mater., Adv. Funct. Mater.等期刊上发表 SCI 收录论文 11 篇,曾在本科、研

究生阶段两次获得清华大学特等奖学金。

2012 届化学班郑庆飞,在中科院上海有机所刘文课题组获得博士学位。现在国际知名癌症研究中心 Memorial Sloan-Kettering Cancer Center 做博士后研究。博士阶段通过合成生物学策略改造了两类抗生素的生物合成途径,并获得了国际上首个 D-A 酶的复合物晶体结构,首次提出了酶促协同反应的普适性生化机制。博士阶段申请中国专利 2 项,发表 SCI 收录论文 22 篇,其中以第一作者身份在 PNAS,ACS Chem. Biol.,Cell Chem. Biol.等化学生物学领域国际知名期刊上发表论文 10 篇。近日还获得了华人生物学在读博士最高奖项吴瑞奖。

2012 届化学班宋辰晨,在斯坦福大学 Todd Martinez 课题组获得博士学位。博士期间获得斯坦福研究生全额奖学金,以第一作者身份在 J. Chem. Phys., J. Chem. Theory Comput.等计算化学领域国际知名期刊上发表论文 6 篇,并在第 253 届美国化学会年会上做口头报告。

2012 届化学班陈骥,在清华大学石高全教授课题组获得博士学位。主要研究方向为氧化石墨烯化学合成工艺的探索及石墨烯先进材料的开发与利用。博士期间以第一作者身份在 Advanced Materials, Carbon, Chemical Science 等国际知名期刊上发表论文 8 篇,并多次获得研究生国家奖学金等奖励。

2017 届化学班吴之晨,现在美国加州 Scripps 研究所余金权课题组攻读博士学位。获清华大学优秀毕业生称号。曾在本科毕业前以第一作者身份,在国际著名化学类期刊 Angewandte 发表高质量论文一篇。

2010届计算机科学实验班印奇,2012年创立旷视科技(Megvii)并担任CEO,入选《福布斯》2016年度首次发布的亚洲30位30岁以下青年领袖榜单(2016 Forbes 30 Under 30 Asia List in Enterprise Technology),并位列科技企业家榜单首位。

2012 届计算机科学实验班马腾宇,2017 年博士毕业于普林斯顿大学,现已获得美国 MIT、哈佛、斯坦福、CMU、加州理工学院等顶尖高校的助理教授 Offer,即将前往斯坦福大学担任助理教授。至今已在国际顶级会议和期刊上发表高质量论文近 20 篇。

2014 届计算机科学实验班王君行获 ACM 计算经济学会议最佳学生论文奖, 全球首位在本科阶段获此项奖励的学生。

2016届计算机科学实验班钟沛林同学作为首位中国籍本科生在STOC2016上

发表第一作者论文。

2017 届计算机科学实验班张涵瑞同学提出一种新型博弈模型,成果被博弈论领域著名期刊《博弈论国际期刊》(International Journal of Game Theory)接收。

2017 届计算机科学实验班陈立杰同学获得中国大学生程序设计竞赛总决赛冠军,并以第一作者身份在 FOCS2017、CCC2017、AAAI2017、AAMAS2017、AISTATS2017、COLT2016&2017 和 ISAAC2016 上发表论文,独自解决了著名量子信息学者 John Watrous 教授在 2002 年提出的开放问题 (open problem)。

2017 届计算机科学实验班刘壮同学以共同第一作者身份发表的大会论文 Densely Connected Convolutional Networks(《密集连接的卷积神经网络》)获得了 2017 年国际计算机视觉与模式识别大会(IEEE Conference on Computer Vision and Pattern Recognition, CVPR2017)最佳论文奖。论文主要的贡献是提出了一种全新的卷积神经网络架构 DenseNet,显著地提升了模型在图片识别任务上的准确率。

2015 届钱学森力学班学生薛楠,在首席教授郑泉水的指导下,揭示了漂浮颗粒远离非平衡态的稳定性机理,研究成果以"Strongly Metastable Assemblies of Particles at Liquid Interfaces"为题,薛楠作为第1作者在国际著名学术刊物 Langmuir(2014)发表后,刊登在ACS 网站的主页。